If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-134=0
a = 2; b = -8; c = -134;
Δ = b2-4ac
Δ = -82-4·2·(-134)
Δ = 1136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1136}=\sqrt{16*71}=\sqrt{16}*\sqrt{71}=4\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{71}}{2*2}=\frac{8-4\sqrt{71}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{71}}{2*2}=\frac{8+4\sqrt{71}}{4} $
| 57.5+11.8x=2.9(1+11.6x) | | 30=6a-6 | | -6p+9=9–6p | | 10(x+5)+72=-14-14 | | x2+10x+2=0 | | 2v–2v=0 | | 10p+5=2+10p | | 4(x-4)-(x+3)=16 | | (3+x)2-5=78 | | 4(x-4)-(x+3)=12 | | -6x^2-18x=0 | | x+8.1=24 | | 1/8(z-3)=1/2(z+1/2) | | 73=5v+8 | | 4(x-4)-(x-3)=16 | | 10-6x=5x+10 | | 6x^2+7x-63=0 | | 9x^2-6x-6=-3 | | 18+x=145 | | (7x+2)=(6x+8) | | 9x^2-6x-6=3 | | 4+10y=3 | | 3x-2-(x)=4-(x-x) | | 1.4x*11.1=-8.0x+7.3 | | 3n-3(2n-1)=12 | | 12r2-13r-35=0 | | 9(x+2)=6(2x-4) | | 4/3y-2=-10 | | -7=-3-m | | -16x^2+80x+1344=0 | | 2x-2=14-2x | | x=$0.12x+$3.07 |